#126 Quantum overlay effective utilization of EM

In the second half of the previous issue I mentioned the quantum overlay effect. Utilization of this technology has infinite possibilities, in a sense, so here I will explain it again. In other words, when looking at the utilization method of EM from the viewpoint of quantum mechanics, quality matters more than the quantity; if the quality is the same, the achieved result is decided depending on the number of times it is used, and I refer to the number of times as the quantum overlay effect. Basically it leads to the energy system called “baker’s transformation” (see Wikipedia). In short, it depends on how many times we carefully used EM, and it became clear that that level was recorded in the harvested crops.

In conclusion, using rectifying coal etc. to set boundaries to create energy fields and increase the density of EM, the spot will concentrate energy in a quantum way. In the quantum world, the degree of concentration of energy differs depending on how dimensions, not quantities, are layered.

This can be recognized by anyone who has applied 1 ton of activated EM solution per 1,000 m2 to the energy field all at once, and applied it in 50 portions. Even if the total amount of activated EM solution is the same, it can be said that the difference in quantum overlay effect is different depending on how it is used. It is understood that the energy is replaced by the energy of the quantum unit that transforms the energy whose dimension has changed at the time of division to anything. That is, when you “knead a pie” a large number of times, the dough becomes stronger, and likewise here you create a different dimension of quality.

Pie dough layering transformation (baker’s transformation) is a type of two-dimensional discrete dynamics system, and is known as the basic system that extracts the
typical mechanism for generating chaos. The name follows the operation of stretching and folding of pie dough in cooking. In some cases it is also called a Baker’s Map. In short, it is a mathematical explanation given to the transformation whereby dough becomes uniform by repeating folding and kneading.
The original idea of baker’s transformation was devised in 1937 by Eberhard Hopf. According to him, the original English name “baker’s transformation” was named by John von Neumann in 1949 during a conversation they had. Literally translated into Japanese it is “ bakery conversion” or “bakery mapping,” but it is generally called “pie dough layering transformation,” rather than using the terms “bakery” or “kneading bread.”

In the previous issue, I reported that the quantum wave value of Mr. Kikuchi’s rice in Fukushima was the highest. However, after that, Mr. Tsuneishi’s rice in Kochi Prefecture arrived and we discovered that the quantum wave value of his was even higher than Mr. Kikuchi’s rice, so I asked him to send me his records of how he applied EM up to this point.

Although Mr. Tsuneishi has not been cultivating using EM for a long time, this season, after he got my advice, he worked on utilizing activated EM with sea water, and set EM barriers. The outline of his record is as follows.

A Case of Rice (Koshihikari variety) cultivation [Mr. Tsuneishi in Kochi Prefecture]
Late February EM mudballs (130 per 1,000 m2) are buried at a depth of 30 cm and at 2.5 m intervals
Late February Applied chicken manure (about 225kg per 1,000 m2)
Early March Seed treatment (immersion in 1:500 activated EM solution for 10 days)
Late March Rough pounding rice fields
Early April Ploughing and irrigating the rice fields
Mid April Rice planting (50 stocks per 3.3 m2 at 23 cm intervals, about 3 to 5 seedlings per a stock)
Late April Couldn’t help spraying herbicide
Early May Applied activated EM solution (80 to 100 liters per 1,000 m2)
Mid May Applied activated EM solution (80 to 100 liters per 1,000 m2)
Late May Applied activated EM solution (80 to 100 liters per 1,000 m2)
Early June Applied activated EM solution (80 to 100 liters per 1,000 m2)
Late June Applied activated EM solution (80 to 100 liters per 1,000 m2)
Early July Applied activated EM solution (80 to 100 liters per 1,000 m2)
Mid July Applied activated EM solution (80 to 100 liters per 1,000 m2)
Mid August Rice harvesting

• Approximately 450 to 500 liters of activated EM solution applied per 1,000 m2

• Activated EM solution was mixed with seawater (98) : EM1 (1) : molasses (1) + a handful of EM ceramics powder in a 100 liter tank. It is cultured for 7 to 10 days.

• EM mudballs are made of 15 liters of soil : 3 liters of Type 2 bokashi : 6 liters of smoked rice husk charcoal : 80 ml of Fermented Cera C and about 6 liters of activated EM solution with seawater.

• Using conventional methods the harvest is 8 bales per 1,000 m2, but with the above method it was over 10 bales.

• As for the above method, Dr. Higa’s advice is as described below.

• Change the application of activated EM solution from early May to mid July to foliar spraying

• Spray a 1:5 dilution of activated EM solution over leaves at 100 to 200 liters per 1,000 m2, around twice a month until just before harvest.

• After harvest, by October, spread 500 kg of salt per 1,000 m2 on the surface for weed control. One to two weeks later, spray 100 liters of activated EM solution per 1,000 m2.

• Spread from 250 to 500 kg of salt per 1,000 m2 in early March. Spray 100 liters of activated EM solution per 1,000 m2 one to two weeks later. If you follow these application steps, you can reduce the amount of chicken manure to 100 kg per 1,000 m2.

• To further enhance the quality of activated EM solution, apply a barrier sticker at the four corners of the culture tank and add 1/10,000 to 1/20,000 of EMX Gold.

The yield in surrounding fields using conventional methods is 8 bales per 1,000 m2, but here the quality is the highest, and the yield is 10 bales or more. (One area had 12 bales.) This is a revolution in rice cultivation. Based on this result, as shown below, I advised to add salt usage and foliar spraying to counter weeds and further increase yield.

Foliar spraying where barriers are made
People generally think that foliar spraying means pesticides carefully sprayed on the entire crop, but in the case of using EM, this is not necessary and there is enough overlaying effect even if it is lightly applied from above. (Photo 1).

Therefore, in the case of a greenhouse, as you see in the photo, we use an unmanned fogging machine or fine mist system, which is more effective if it can be sprayed four to five times a day or more. In the case of rice fields and upland fields, it is sufficient if you use a large sized fine mist sprayer for three to five minutes per 1,000 m2. If the level of the barrier is high, the spraying time can be shortened to thirty seconds to about one minute.

Photo 2 shows after making a barrier, applying 2 tons of salt per 1,000 m2 and cultivating cucumbers, (see issue #122), and then planting tomatoes and Komatsuna. They apply foliar spray three to four times a day using an automatic sprayer. Komatsuna planted next to the stock of tomato plants have grown well, and there has been an unprecedented, stable growth in the tomatoes.

Although it is still unclear what the limits are of such overlaying effects of EM, it is possible to further simplify it if the barrier is strengthened, and in the future reach a level where spraying equipment is unnecessary and it is enough to just spray it in a corner with a watering can.

Photo 1. Unmanned fogging machine”House Sprayer”

Photo 2. Tomatoes and Komatsuna growing at Sunshine Farm

Bron: https://emrojapan.com/living/123

The zoo beneath our feet: We’re only beginning to understand soil’s hidden world

Een interessant artikel in de Washington Post over het belang van het bodemleven:

The gardener has a long, touchy-feely relationship with the soil. As every good cultivator knows, you assess the earth by holding it. Is it dark and crumbly, is there an earthworm or beetle in there, is it moist, and when you smell it, are you getting that pleasant earthy aroma?

All these signs are reassuring, and have been through the ages, but they are mere indicators of something much greater and infinitely mysterious: a hidden universe beneath our feet.

This cosmos is only now revealing itself as a result of scientific discoveries based on better microscopic imaging and DNA analysis. There is much still to learn, but it boils down to this: Plants nurture a whole world of creatures in the soil that in return feed and protect the plants, including and especially trees. It is a subterranean community that includes worms, insects, mites, other arthropods you’ve never heard of, amoebas, and fellow protozoa. The dominant organisms are bacteria and fungi. All these players work together, sometimes by eating one another.

The awareness of this biosphere should change the way gardeners think about cultivating plants and heighten everyone’s understanding of the natural world. In other words, don’t ever call it “dirt” again.

The sheer vitality of it is mind-bending: A teaspoon of good loam may contain a billion bacteria, yards of fungal strands, several thousand protozoas and a few dozen nematodes, according to Jeff Lowenfels, a garden writer based in Anchorage and co-author of “Teaming With Microbes.”

This is, basically, how it works: Plants manufacture carbohydrates through photosynthesis, but not just for themselves. They release some of their carbon sugars into the soil, which causes the bacteria and fungi to show up to feed. The bacteria crowd around the root zone, and the fungi form vast networks of interlocking strands that often link one plant to another. The bacteria convert nitrogen and other nutrients into forms the plants can use, often by getting devoured by other microbes.

Lees het hele artikel hier: https://www.washingtonpost.com/lifestyle/home/the-zoo-beneath-our-feet-were-only-beginning-to-understand-soils-hidden-world/2017/08/08/f73e3950-7799-11e7-9eac-d56bd5568db8_story.html

‘Wees niet te netjes, laat het blad alsjeblieft liggen’

De bomen bij Havezate Mensinge en op de brinken in Norg hebben het zwaar. Doordat het afgevallen blad jarenlang is verwijderd, is de grond verarmd. Tijd voor de gemeente Noordenveld en Landschapsbeheer Drenthe om in actie te komen.
Om de toestand van de grond te verbeteren wordt gebruik gemaakt van bokashi, een Japanse manier om organisch restmateriaal terug te geven aan de bodem.

“Je kunt het vergelijken met compost, maar dan iets anders gemaakt”, legt André Efftink van Landschapsbeheer Drenthe uit.

‘Hele grote worst’
“De vorm van bokashi waar wij mee bezig zijn is bladbokashi. In de gemeente Noordenveld draaien we een pilot om vijfhonderd ton blad in een soort hele grote worst te duwen. Daar voegen we wat stoffen bij en dan komt er na een week of acht a tien een soort bladaarde uit, die wordt gebruikt als bodemverbeteraar. Dat is bokashi”

Bokashi wordt onder andere gebruikt op brinken, op plekken waar het blad normaal wordt weggehaald. En dat is hard nodig volgens Efftink.

“Bomen gaan in conditie achteruit en dat heeft een groot deel te maken met het weghalen van blad. Als je blad laat liggen, trekken wormpjes het de grond in en komt er organisch materiaal binnen. De worm maakt eigenlijk zijn eigen bokahsi.”

Die organische stoffen in de bomen zijn nodig, omdat het een belangrijke voedselbron van bomen en planten is. De organische stoffen bevatten bacteriën en schimmels die ze nodig hebben om te leven.

Niet te netjes
Op veel perken en brinken wordt blad weggehaald. Enerzijds omdat het er netjes uit moet zien, maar ook uit veiligheidsoverwegingen zodat mensen er bijvoorbeeld niet over uitglijden.

“Ik snap dat we het soms moeten opruimen als het om veiligheidsredenen gaat, maar wees alsjeblieft niet zo netjes en laat het blad alsjeblieft liggen. Als we met deze pilot het blad op een gereguleerde manier kunnen terugbrengen op de brinken en perken, dan is het een basis om het bodemleven weer op gang te brengen”, besluit Efftink.

Wil je meer weten over bokashi en bodemleven? Dan kun je op zondag 2 maart mee met de fietsexcusrie van Landschapsbeheer Drenthe. Meer informatie over de excursie vind je hier.

Wat doen die wormen nu eigenlijk met de gevallen bladeren? Eerder legde Natuurkieker Coby het uit.

Bron: https://www.rtvdrenthe.nl/nieuws/144246/Wees-niet-te-netjes-laat-het-blad-alsjeblieft-liggen

Zorgt bokashi straks voor een gezonde Drentse bodem? En wat is het eigenlijk?

Landschapsbeheer Drenthe is in Noordenveld met een pilot bezig waarbij bokashi de verschraalde grond moet verrijken. Daarom zes vragen aan projectleider Anja Verbers.

Wat betekent bokashi eigenlijk?

„Het is een Japanse term voor het fermenteren van organisch materiaal. In Japan is het een veelgebruikte methode om grond van voedingsstoffen te voorzien, zoals wij dat met compost doen.”

Hoe werkt dat dan precies?

„In plaats van het composteren van organisch materiaal, fermenteer je het. Dat betekent dat er geen zuurstof bij komt kijken. Je voegt om bokashi te maken micro-organismen als bacteriën en schimmels, samen met een soort kalk, toe aan groente-, fruit- en tuinafval. Dat gaat dan samen in een luchtdichte zak of ruimte. In een maand of drie is alles omgezet in bokashi en kun je het uitstrooien over voedselarme grond.”

Wat is het voordeel ten opzichte van composteren?

„Het maken van bokahsi gaat veel sneller en er komt nauwelijks koolstofdioxide vrij omdat het luchtdicht gebeurt. Daarnaast slinkt een composthoop altijd enorm, bokashi heeft precies hetzelfde volume als het pak bladeren waarmee je begon. Je houdt dus meer voedingsstoffen over.”

Jullie zijn met een pilot bezig. Wat doen jullie precies?

„Het gaat al een aantal jaar niet goed met de bomen op de brinken in Norg en rondom de Havezate Mensinge. Dat komt doordat bladeren daar altijd worden opgeruimd en de bodem erg verschraald is. Wij snappen wel dat je een gazon niet wilt laten verstikken onder een laag bladeren, maar de grond wordt er wel armer van. Door alle opgehaalde bladeren nu te fermenteren tot bokashi en dat in het voorjaar uit te strooien, kun je de nodige voedingsstoffen toch weer in het ecosysteem brengen. In Hengelo en Deventer wordt al langer gewerkt met bokashi, daar zijn ze erg positief. In Noordenveld willen we het drie jaar achter elkaar proberen, en die ervaringen meenemen voor de rest van Drenthe.”

Hoeveel blad is er opgehaald?

„Afgelopen najaar hebben we ongeveer 500 ton bladafval verwerkt tot bokashi, dat is ongeveer de helft van al het blad dat de gemeente binnenkrijgt. In maart wordt dit uitgestrooid. Hopelijk kunnen we volgend jaar een nog groter percentage fermenteren.”

Landschapsbeheer houdt binnenkort een bodemexcursie rond Norg. Wat gaat daar gebeuren?

„We fietsen op 2 maart met deelnemers rondom Norg om onder meer te leren over de verschillende bodemstructuren en bodemgezondheid. Leuk is dat je een jampotje met grond uit eigen tuin mee mag nemen, dan gaan we een proefje doen en kijken hoeveel organische stof er in je tuin zit. Aanmelden kan via onze website. Iederen kan thuis trouwens heel makkelijk bokashi maken, daar zijn wel sets voor te koop. Het mooie is dat vrijwel al je organisch afval gebruikt kan worden. Het is heel erg effectief.”

Bron: https://www.dvhn.nl/drenthe/Zorgt-bokashi-straks-voor-een-gezonde-Drentse-bodem-En-wat-is-het-eigenlijk-24202571.html

Probioticum beschermt tegen griep

      Geen reacties op Probioticum beschermt tegen griep

Dat probiotica inderdaad de immuniteit kunnen versterken, werd nogmaals aangetoond in een Spaanse studie. Artsen gaven een probioticum aan 60 zestigplussers die enkele maanden voordien gevaccineerd waren tegen het griepvirus. Drie maanden later werden de effecten ervan in het bloed gemeten. De immuniteit voor het H3N2-griepvirus verbeterde. In het bloed werden meer antilichamen tegen het virus gevonden, dat zijn stoffen die virusdeeltjes in het lichaam neutraliseren.

In deze studie werd lactobacillus plantarum als probioticum gebruikt, maar ook andere stammen kunnen de immuniteit versterken. Vooral voor senioren is dit interessant, want zij hebben een zwakkere immuniteit en halen nog minder bescherming uit een griepspuit.

Bron: https://www.abcgezondheid.be/nl/news/probioticum_beschermt_tegen_griep/

How gut bacteria controls gene expression through “interspecies communication”

Imagine a tiny microbe living inside you with the power to control the activity of your DNA. Scientists are increasingly discovering how much control our gut bacteria may actually have over us, with a new study describing how individual bacteria can secrete a molecule that literally turns genes off or on.

Epigenetics is a field of study looking at what mechanisms turn specific genes on or off. Separate to our hard-coded DNA, certain external influences can either enhance the expression of a gene or silence it altogether. We know that gut bacteria can modulate the expression of certain genes, potentially influencing the onset of a variety of autoimmune diseases. However, it is unclear exactly how these tiny microbes actually do this.

A fascinating new study has revealed for the first time that certain bacteria can secrete a compound called nitric oxide which is known to regulate gene expression. The researchers describe this interaction between host and bacteria as a form of “interspecies communication.”

Nitric oxide is a gas molecule fundamental to cellular signaling and health. It was only recently, back in 2013, that scientists discovered the molecule’s epigenetic role. The new research set out to understand whether bacteria uses this same network to alter its hosts DNA.

The study used C. elegans worms to examine how this process could work. The worms were administered bacteria known to produce nitric oxide and then the researchers set their focus on a specific protein called ALG-1. This protein is known to play a crucial role in controlling the expression of several genes.

The study revealed that when the bacteria produced excessive volumes of nitric oxide it fundamentally impaired the function of ALG-1 and disrupted the worm’s healthy development. The worm essentially grew deformed reproductive organs and died.

Jonathan Stamler, senior author on the new study, suggests in the real world such an extreme outcome would not pragmatically happen. It’s obviously not in the best interests of either the host or the bacteria to stimulate a biological mechanism that would cause both organisms to die.

“The worm is going to be able to stop eating the bacteria that make the nitric oxide, or it will begin to eat different bacteria that makes less nitric oxide, or change its environment, or countless other adaptations,” says Stamler. “But by the same token, too much nitric oxide produced by our microbiome may cause disease or developmental problems in the fetus.”

As with much microbiome research these days, the study raises more questions that it answers, and it is not entirely clear how this specific mechanism can be harnessed into a useful clinical treatment. Stamler suggests that now this mechanism has been identified, researchers can potentially home in on specific human health outcomes it may be influencing. From that point, future treatments could conceivably modulate this nitric oxide pathway in the gut to benefit human health.

“I now think of this therapeutically, as a drug,” says Stamler. “There are tremendous opportunities to manipulate nitric oxide to improve human health.”

The new study was published in the journal Cell.

Almost 2,000 previously unknown bacteria discovered in the human gut

Nearly 2,000 previously unknown species of gut bacteria have been discovered by a team of international researchers using novel metagenomic data. The discovery greatly expands our knowledge of the microbial species living inside us, and establishes new computational methods to help reconstruct and identify undiscovered bacterial genomes.

Inside all of us there lies a vast population of trillions of microorganisms. Our gut in particular plays host to the largest microbial population and is home to potentially trillions of microbes. Although the vast majority of this bacteria consists of just 30 or 40 different species, it is still very much unknown exactly how many different kinds of bacteria live inside us.

Different estimates in bacterial species diversity range from 1,000 to 40,000, many of which are still yet to be identified. These undiscovered species may not survive well outside of the gut, or may be unique to geographical populations. This latest study set out to characterize undiscovered bacteria using new metagenomic analysis – a method that tracks potential unidentified genomic traces in human microbiome samples.

“Computational methods allow us to understand bacteria that we cannot yet culture in the lab,” explains Rob Finn, one of the researchers working on the project. “Using metagenomics to reconstruct bacterial genomes is a bit like reconstructing hundreds of puzzles after mixing all the pieces together, without knowing what the final image is meant to look like, and after completely removing a few pieces from the mix just to make it that bit harder.”

The research ultimately homed in on 1,952 unclassified metagenomic samples indicating previously unknown bacterial species. Almost half of these could not be classified to a known genus, meaning they may be entirely new families or genera. A great deal of the new data was also noted as coming from diverse geographical populations, suggesting future research needs to better study broader populations of people.

“We are seeing a lot of the same bacterial species crop up in the data from European and North American populations,” says Finn. “However, the few South American and African datasets we had access to for this study revealed significant diversity not present in the former populations. This suggests that collecting data from underrepresented populations is essential if we want to achieve a truly comprehensive picture of the composition of the human gut.”

Little is known about the newly discovered bacteria, and they are still yet to be cultured in laboratory conditions or properly classified. However, these new computational methods are undeniably allowing scientists to identify bacterial species that previously remained hidden from the usual analysis methods. Microbiome research may revolutionize medicine in the future but it is still certainly in a nascent stage, and the first step we need to complete is comprehensively identifying the diversity of bacteria that live inside us.

“Research such as this is helping us create a so-called blueprint of the human gut, which in the future could help us understand human health and disease better and could even guide diagnosis and treatment of gastrointestinal diseases,” adds group leader on the project, Trevor Lawley.

The new researcher was published in the journal Nature.