U bestaat voor de helft uit microben, en dat is goed nieuws

Standaard

Ze zitten met triljoenen op en in ons, beschermen ons tegen ziektes, sturen ons gedrag, en zetten zelfs onze definitie van menselijk leven op zijn kop. Microben zijn niet langer boosdoeners in de wetenschappelijke wereld. Ze kunnen miljoenen mensenlevens redden. Daarom springt ook Bill Gates op de kar.

Dieren – wij dus ook – zijn zelfstandige wezens die in de darwiniaanse strijd om te overleven af en toe worden aangevallen door vieze kleine beestjes die ons ziek maken en dreigen te doden. Zo keken wetenschappers jarenlang tegen microben aan. Maar ze moeten hun opvatting dringend bijschaven.
Want, zo stelt de Britse wetenschapsjournalist Ed Yong, er raast een revolutie door de biologie, de gezondheidszorg, de farmasector, de ontwikkelingssamenwerking, de architectuur en misschien zelfs de filosofie. Want hoe kunnen wij als mens beweren dat we onafhankelijke wezens zijn als de helft van de cellen in ons lichaam niet van ons zijn, maar van microben, die met miljarden op onze huid, onder onze oksels en in onze darmen leven? Ze sturen ons immuunsysteem aan, ze breken giftige stoffen af, ze helpen ons voedsel in te nemen, en meer zelfs: ze sturen volgens sommige onderzoeken ook ons gedrag.
‘De nieuwe wetenschappelijke inzichten over microben zijn de belangrijkste revolutie sinds Darwin,’ zegt Yong via Skype vanuit zijn kantoor in Washington D.C. Het boek dat hij erover schreef, ‘I contain multitudes’, net in het Nederlands vertaald als ‘De microben in ons’, werd in de Verenigde Staten een bestseller. Yong, een gerenommeerde wetenschapsschrijver die onder meer voor The Atlantic en National Geographic werkt, kaapte er de belangstelling van Bill Gates mee weg. In een onlinegesprek met Yong stak de stichter van Microsoft zijn bewondering niet onder stoelen of banken: ‘Ik ben overweldigd door het feit hoeveel van zulke micro-organismes er bestaan en hoe ze ons leven beïnvloeden.’

Mannelijke pissebedden

U en ik bezitten elk zo’n 40 triljoen microben. De verzameling van die piepkleine eencellige wezens – op de breedte van een mensenhaar passen er een paar tientallen – wordt het microbioom genoemd. Ze leven in alle mogelijke delen van ons lichaam, van de tandplak in onze mond tot zelfs in onze cellen. In onze darmen alleen al leven er meer dan er sterren in de Melkweg zijn. ‘Als wij eten, doen zij dat ook,’ schrijft Yong. ‘Als we op reis gaan, gaan ze mee. Als we dood gaan, eten ze ons op. Ieder van ons is een dierentuin op zich, een kolonie omsloten door één enkel lichaam. Een collectief van een veelvoud aan soorten. Een hele wereld.’

1
Het zou één jaar duren voor onze samenleving ineenstort, mochten de microben verdwijnen. Ze helpen planten aan stikstof en vormen zo de basis van heel onze voedselketen.

360
Het was de Nederlandse amateurbioloog Antoni van Leeuwenhoek die 350 jaar geleden de eerste microben ontdekte, door onder meer zijn tandplak onder zijn zelfgebouwde microscopen te leggen. Toch bleven microbes jaren in de obscuriteit, of werden ze enkel beschouwd als overbrengers van ziekten.

37 MILJOEN
Met zijn ademhaling brengt een mens elk uur ongeveer 37 miljoen bacteriën in de lucht.

24
Onze microben beïnvloeden ook onze woningen. 24 uur na de verhuizing naar een nieuwe plek overschrijven we de daar aanwezige microben met onze eigen micro-organismen.

16.000
Bacteriën blijven in sommige gevallen heel verwoestende wezens. Door een alliantie aan te gaan met een dennenkever hebben ze in de VS sinds 1999 16.000 vierkante kilometer naaldwoud vernietigd.

10
Door muggen met de wolbachia-bacterie te injecteren zouden wetenschappers het dengue- virus over 10 tot 15 jaar een aanzienlijke slag kunnen toebrengen.

1/6
Uw rechterhand heeft slechts een zesde van de bacteriesoorten gemeen met uw linkerhand.

Die microben bestaan al miljarden jaren langer dan de planten en de dieren. ‘Dieren mogen de kers op de taart zijn, maar bacteriën zijn de taart zelf’, zei de paleontoloog Andrew Knoll ooit. Ze hebben de meest onmogelijke plekken op aarde gekoloniseerd: barre vulkanische bronnen kilometers diep in de oceaan, waterdampen in hoge wolken, kokende warmwaterbronnen, en radioactief afval.

Volgens de razendsnel evoluerende wetenschappelijke inzichten kunnen ze veel mensenlevens redden. Neem de wolbachia, een van de succesvolste bacteriën die vooral in insecten leeft. Het is een fascinerend wezen: hij manipuleert het seksleven van zijn gastheer voor zijn eigen voortbestaan. Omdat hij zich enkel in eitjes kan voortplanten, verandert hij het geslacht van mannelijke pissebedden en zorgt hij ervoor dat bepaalde wespensoorten enkel nog uit vrouwtjes bestaan die zichzelf voortplanten door te klonen.

Maar dezelfde wolbachia zou wel eens miljoenen levens kunnen redden. Door de bacterie in muggen te injecteren zijn wetenschappers erin geslaagd het virus te onderdrukken waarmee die muggen dengue of knokkelkoorts overbrengen, een ziekte die jaarlijks 400 miljoen mensen treft. In Australië werden zo al meer dan 300.000 muggen uitgezet. Voor het eerst in de geschiedenis hebben wetenschappers er een populatie insecten in het wild zo getransformeerd dat ze geen ziekten voor de mens meer verspreiden. De uitdaging bestaat er nu in dezelfde techniek in andere, meer getroffen delen van de wereld toe te passen. Wolbachia zou ook kunnen helpen om het zikavirus en de parasiet die malaria overbrengt te dwarsbomen.

Daarom is een filantroop als Gates zo geïnteresseerd in het boek van Yong. ‘De Gates Foundation investeert miljoenen in onderzoek naar het effect van bacteriën op tropische ziekten’, zegt de wetenschapsjournalist. ‘Mijn boek trekt niet alleen zo veel belangstelling omdat de nieuwe inzichten over microben de definitie van ons leven op zijn kop zetten, maar ook omdat ze de wereld enorm kunnen helpen.’

Ontregelde thermostaat

Bacteriën sturen als een soort managers onze immuniteit en gezondheid aan, schrijft Yong. Ze hebben er misschien zelfs voor gezorgd dat we als mens geworden zijn wie we zijn.

Hij maakt dat hard aan de hand van de werking van moedermelk. Die zit vol complexe suikers, maar baby’s kunnen die vreemd genoeg niet afbreken. Gelukkig zit hun buik vol met bepaalde bacteriën die dat in hun plaats doen: ze zetten de suikers om in vetzuren die de baby wel opneemt. Moeders die zogen, voeden dus hun baby niet, maar wel de bacteriën die de baby voeden. Wellicht dankzij die bacteriën heeft de mens zulke grote hersenen kunnen ontwikkelen. Want andere zoogdieren hebben ze niet, of toch niet in zo’n grote hoeveelheid.

Yong vergelijkt onze bacteriën met een thermostaat die ons immuunsysteem regelt. Maar de jongste jaren loopt het vaak fout, getuige de opmars van allergieën en auto-immuunziekten. Door het feit dat we in steeds kleinere gezinnen opgroeien, verhuisd zijn van de stad naar het platteland, vooral bewerkt voedsel eten, is die thermostaat ontregeld geraakt.

We worden te weinig blootgesteld aan microben, waardoor ons immuunsysteem grillig en onervaren wordt. De ziekenhuisbacterie, die in de Verenigde Staten jaarlijks verantwoordelijk is voor 1,7 miljoen infecties en 90.000 sterfgevallen, zouden we daarom niet alleen moeten bestrijden door dure bacterieresistente vloeren te leggen. Volgens Yong moeten we net de vensters opengooien en extra bacteriën naar binnen laten stromen, die de schadelijke kunnen verdringen.

Microben zouden zelfs onze architectuur kunnen veranderen. Door planten in ventilatiesystemen van gebouwen te zetten of bolletjes op te hangen die bepaalde bacteriën verspreiden, zou je het microbioomsysteem van hele steden kunnen aanpassen in ons voordeel. Zo is Luke Leung, de toparchitect die de wolkenkrabber Burj Khalifa in Dubai heeft gebouwd, een microbioomfanaat geworden.

Kankercellen elimineren

De meest veelbelovende doorbraken vinden wellicht in de gezondheidszorg plaats. Door de bacteriën van muizen te manipuleren zijn in labo’s over de hele wereld al talloze onderzoeken gevoerd die zouden kunnen leiden tot nieuwe therapieën tegen obesitas, allergieën, darmkanker, diabetes, multiple sclerose en ondervoeding. Maar Yong tempert al te luid hoerageroep. ‘Hebben microbiële veranderingen buiten de gereguleerde omgeving van laboratoria en het atypische lichaam van laboratoriummuizen werkelijk een effect op onze dagelijkse gezondheidstoestand?’

Veel wetenschappers blijven sceptisch over de groeiende hype rond de genezende kracht van microben, maar farmagiganten als Johnson & Johnson zijn alvast op de kar gesprongen en pompen miljoenen in onderzoek naar het microbioom. Probiotica, vaak in yoghurt zoals bij Yakult, zijn al een miljardenbusiness, maar de effecten op onze gezondheid zijn nog altijd niet bewezen. Dat zou in de toekomst kunnen veranderen.
Het is niet ondenkbaar dat de dokter van de toekomst u een gepersonaliseerde pil voorschrijft met daarin bacteriën die een ziekte genezen, uw immuunsysteem herstellen, kankercellen elimineren of zelfs gifstoffen in medicijnen omzetten. ‘Pas sinds kort weten we genoeg over de microbiële wereld om met het manipuleren ervan te beginnen. Onze pogingen staan nog in de kinderschoenen en ons zelfvertrouwen is soms overdreven, maar het potentieel is enorm’, zegt Yong.

Frituurhonger

Wat ons wereldbeeld helemaal ondersteboven gooit, zijn de studies die suggereren dat microben ons gedrag kunnen aansturen. Yong geeft het voorbeeld van de hersenparasiet Toxoplasmose gondii, die zich alleen kan voortplanten in katten. Als hij in een rat terechtkomt, stuurt hij via het aanmaken van dopamine de hersenen van die rat aan, zodat die in plaats van weg te lopen plots wordt aangetrokken door katten en ernaartoe loopt. Weg rat, kat blij en de Toxoplasmose gondii kan zich weer voortplanten.

‘Waarom zouden bacteriën in onze darmen niet op dezelfde manier ons gedrag kunnen aansturen?’, vraagt Yong zich af. Onderzoek bij muizen toont een verband tussen darmmicroben en symptomen van autisme en schizofrenie aan. De fysieke connectie bestaat in elk geval: de nervus vagus is een lange, vertakkende zenuw die prikkels overdraagt tussen de hersenen en de darmen.

Je kan de redenering nog verder drijven. Voelt u zich ook schuldig dat u honger krijgt telkens als u een frituur passeert? Wel, sommige bacteriën in uw lichaam gedijen op vet. Andere op planten- vezels. Welke maaltijd u kiest, bepaalt dus welke wezens in uw darmen worden gevoed. Dat brengt Yong tot de vraag: ‘Als de microben bij het eten van de ‘juiste’ dingen dopamine vrijmaken, een stof die tot genot leidt, krijgen ze dan zo inspraak in uw menukeuze?’
Met andere woorden: u hebt zelf geen zin in friet, het zijn uw bacteriën. Yong: ‘In welke mate het gebeurt, weten we niet zeker. Maar dat bacteriën onze hersenen kunnen veranderen, is bijna zeker. Dat is een verontrustende gedachte.’

BRON: http://www.tijd.be/dossier/universiteiten/U-bestaat-voor-de-helft-uit-microben-en-dat-is-goed-nieuws/9893840?ckc=1&ts=1495183203

Gut Hack

Standaard

This short film is, in many ways, a happy accident. It started with a chance meeting, as a former NASA scientist running a lab out of his apartment started talking to us about an experiment: Would it be possible, he wondered, to completely eradicate the ecosystem of bacteria living in and on his body and replace it with someone else’s?

This biohacker was Josiah Zayner, and what he proposed was an extreme version of a fecal transplant. Josiah had long suffered from digestive issues and hoped the transplant might provide relief. Also, he was curious about what would happen. Fecal transplants are becoming more common but are still usually reserved for the life-threatening infection Clostridium difficile, and are performed only in medical facilities. Josiah’s plan was to check himself into a hotel and do the whole thing himself. He would take antibiotics, then use bacterial samples from a donor (including saliva, skin cultures and feces) to recolonize his body with the new ecosystem of microorganisms. When we asked if we could film the experiment, Josiah said yes. And then we had to make this film.

An undertaking like this raises some questions: Taking large amounts of antibiotics can put one at risk of dangerous infections, and ingesting feces that had not been screened for pathogens can lead to serious illnesses. We wanted to make sure the story we told communicated the risks and did not present this individual effort as some sort of miracle cure. But there were compelling reasons to explore it.

Humans tend to think of themselves as individuals, but their lives are profoundly shaped by the huge collections of microorganisms that live on and in them. Research has suggested that the microbiome affects our digestion, skin health, perhaps even our mood. There is so much we do not know about the fascinating ways that bacteria work with us, on us and in us. This is the story of one person wading into his own teeming, messy microbial ecosystem.

Healthier gut bacteria and weight loss achieved through magnetic brain stimulation

Standaard

For several years now, researchers have been building on a series of studies that have displayed links between non-invasive, deep Transcranial Magnetic Stimulation (dTMS) and reduced food cravings. Now, for the first time, research has shown that dTMS can fundamentally alter the composition of gut microbiota, resulting in both weight loss and general improvements in other metabolic and hormonal factors.

Transcranial Magnetic Stimulation has shown promise in recent years for a variety of applications, from boosting memory function to treating migraines. The technique involves firing magnetic pulses into particular regions of the brain to alter the activity of certain neurons. The process is currently approved for use in the United States to treat major depression.

Following on from studies that showed how an imbalance in gut bacteria altered the brain signals for appetite, a team at the IRCCS Policlinico San Donato and University of Milan set out to examine how dTMS could effect the composition of a subject’s gut microbiota.

The study involved 14 subjects split into two groups. One group received 15 dTMS sessions over five weeks, targeting the insula and prefrontal cortex, while the other group was the control, receiving a sham simulation.

As well as analyzing the subjects’ gut microbiota through stool samples both before and after the trial, the team measured blood levels of insulin, pituitary gland hormones, glucose and a neurotransmitter called norepinephrine, which is known to affect microbiota composition.

The research team noted significant differences between the dTMS subjects and the control group after five weeks, with the dTMS subjects losing more than three percent of their total body weight and more than four percent of their fat.

Most interestingly, the stool samples showed that the dTMS subjects had greatly altered gut microbiota composition, including higher levels of several beneficial bacteria associated with anti-inflammatory properties and a general improvement in certain hormonal parameters. The control group receiving the sham stimulations were noted as having no clinically relevant changes in any of these areas.

“These changes suggest a beneficial effect of dTMS on both weight loss and change in microbiota composition,” says Professor Livio Luzi, head of the research. “Our research shows the innovative ability of dTMS in exerting anti-obesity effects through alteration of the gut-brain axis.”

The “gut-brain axis” is hot area of research at the moment, with scientists discovering the degree of interaction between brain function and gut bacteria to be significantly more complex and comprehensive than previously known. This is the first time researchers have shown that the gut microbiota can be altered through magnetic brain stimulation and it paves the way for fascinating new therapeutic interventions to battle obesity in the future.

The research will be presented on Sunday April 9th at ENDO 2017, the Endocrine Society’s 99th annual meeting.

Source: The Endocrine Society

Onze bron: http://newatlas.com/magnetic-brain-stimulation-alters-gut-bacteria/48755/

De microbioomoplossing | Een totaal nieuwe manier om je lichaam van binnenuit te genezen

Standaard

(Succesboeken | Dr. Robynne Chutkan) Het microbioom – de verzamelnaam voor de ‘niet-te-tellen’ bacteriën die in ons spijsverteringskanaal wonen – is het recentste medische nieuwsonderwerp. Maar wat betekent dit baanbrekende onderzoek nu eigenlijk voor onze dagelijkse gezondheid?

Dr. Robynne Chutkan, voegt de nieuwste bevindingen samen en legt uit dat door het standaard westerse voedingspatroon en onze supersteriele leefwijze onze microben uitgehongerd raken. Hierbij worden de ‘goede bacteriën’ uitgedund die cruciaal zijn voor onze gezondheid en wordt woekering van precies de verkeerde soorten bacteriën aangemoedigd. De verstoorde balans die hiervan het gevolg is maakt ons vatbaar voor talloze auto-immuunziekten en chronische aandoeningen. We kunnen effectieve veranderingen aanbrengen in onze leef- en eetwijze om deze schade ongedaan te maken.

Dr. Chutkan heeft duizenden patiënten geholpen die leden aan een verstoord microbioom met haar uitgebreide Leef vies, eet schoon plan, dat is ontworpen om schadelijke medicaties en voedingsmiddelen uit te bannen en weer gezond te worden. In dit boek biedt ze haar indrukwekkende programma aan om lezers overal ter wereld te helpen herstellen en genezen. Met praktisch advies.

In dit boek vind je o.a.:

  • Een overzicht van de ‘moderne microbiële verstoorders’ die ons lichaam ontdoen van de natuurlijke beschermingssystemen.
  • Heerlijke, voedzame recepten die de groei van goede bacteriën stimuleren.
  • Een lijst met belangrijke vragen die je je arts kunt stellen als je antibiotica krijgt voorgeschreven en advies over hoe je je darmen tijdens een behandelingskuur kunt beschermen.
  • Een leidraad voor het kiezen van de juiste probiotica en supplementen.
  • Essentiële informatie over hoe je aandoeningen als eczeem, het chronischevermoeidheidssyndroom, de ziekte van Crohn, colitis, het prikkelbaredarmsyndroom en meer kunt voorkomen en ervan kunt herstellen.
  • Een introductie in de ontlastingstransplantatie, het allernieuwste op het gebied van het herstellen van een ernstig verstoord microbioom.

Overige productinformatie:
320 pagina’s
ISBN: 9789079872992
Uitvoering: Softcover
Auteur: Dr. Robynne Chutkan
Uitgeverij: Succesboeken
Prijs: € 24,50
Om te bestellen klik hier

Wie is dokter Chutkan?
Robynne Chutkan, arts, FASGE (Fellow of the American Society for Gastrointestinal Endoscopy), is oprichter van het Digestive Center for Woman en sinds 1997 faculteitslid van het Georgetown University Hospital in Washington, DC, en een van de toonaangevende gastro-enterologen (maag-darm-leverspecialist) van de wereld. Ze is opgeleid in Yale en Columbia en enthousiast snowboarder, marathonloper en vinyasa-yogabeoefenaar. Ze helpt op onverzettelijke wijze haar patiënten een langer, maar vooral beter leven te krijgen.

De redactie van Earth Matters maakt een keuze uit pas uitgekomen boeken die voor haar lezers interessant kunnen zijn. Als u bij Succesboeken een boek bestelt, ontvangt Earth Matters een gedeelte van de verkoopprijs. Hiermee ondersteunt u Earth Matters en haar visie. Onze dank daarvoor!

Bron: Succesboeken

Onze bron: http://www.earth-matters.nl/14/13379/media-en-agenda/de-microbioomoplossing-een-totaal-nieuwe-manier-om-je-lichaam-van-binnenuit-te-genezen

Salmon Sperm and Bee Venom in Your Eye?

Standaard

Excuse us, you have something in your eye: bacteria.

Pop quiz. Which part of your body is just about the same size now as it was on the day you were born?

In fact, you’re almost certainly making use of it right now.

Yup, an eyeball remains around one inch in diameter from the minute we’re born until the day we die, and it’s why the small head of an infant can make us believe that babies have big eyes. It’s actually a matter of scale.

Unless you’re reading this via some kind of whizzy text-to-speech gizmo, you’re now using your eyes, and reading our words through a thin biofilm that contains bacteria. That could explain the fuzziness.

Welcome to your ocular microbiome.

Until pretty recently, it was widely believed that, unless they were infected, our eyes were bacteria-free. But studies now show that a healthy eye does indeed contain its own ecosystem of microorganisms that remain in place despite tears and the approximately twelve times a minute that we blink.

It was in 2009 that scientist Valery Shestopalov, from the Bascom Palmer Eye Institute at the University of Miami, founded the Ocular Microbiome Project, an initiative that now has twelve collaborators in five universities.

Dr. Shestopalov’s early work showed that the surfaces of what he termed the “exposed mucosal epithelium” in the eye are densely populated with microorganisms.

In the eye, the mucosal epithelium is the wet membrane that forms the surface of the eye, and the insides of the eyelids.

Around a dozen bacterial genera dominate the eye’s conjunctiva, which is the white of the eye (the “sclera”) and the eyelids.

Interestingly, on the corneal surface (the transparent part of your eye, which covers your iris and pupil) there’s likely to be a slightly different microbial community, although again with about twelve predominant genera.

You see? Even when you’re healthy, there’s a barn load of bacteria in your eye.

But what happens when you get an infection, though?

Well, the two most common eye infections are styes and conjunctivitis (sometimes called “pink eye”).

Styes are those pesky little bumps that can form on the eyelid, generally the result of skin bacteria getting into the hair follicle of an eyelash.

Conjunctivitis can indeed be caused by bacteria, but it’s also possible that a virus or allergy could be the culprit.

Other causes can be substances that cause irritation, contact lens products, eye-drops, or eye ointments.

More on contact lenses in a moment, but first some intriguing findings about infections of the cornea, which are known as keratitis (the eye is a complicated space when it comes to naming infections).

Research has shown that during keratitis, bacterial diversity on the cornea actually reduces rather than increases, and these changes typically occur before eye infections are diagnosed, making it possible that monitoring of the ocular microbiome might form some kind of future diagnostic tool.

But what of contact lenses, then?

The US Food and Drug Administration (FDA) reports that around 30 million Americans wear them, so does this affect the bacteria in their eyes?

Yes indeedy.

A study at New York University School of Medicine (NYU) compared the ocular microbiomes of lens-wearers with those of non-wearers, and found considerable differences.

In fact, contact lens wearers tend to have an ocular microbiome which is more like their skin microbiome.

It’s tempting to jump to the conclusion that this is simply because contact lens wearers are frequently poking their fingers into their eyes (an idea many non-wearers probably flinch at), but although the NYU researchers acknowledge that this could indeed be the reason, they say it’s actually too early to be sure.

It is, however, a good time to remind all lens-wearers of the importance of thorough hand-washing before dealing with contacts.

Dr. Shestopalov’s team sequenced bacteria from contact lenses used for one day, finding relatively little diversity on their surfaces, as well as further evidence that contact lens wearers have an ocular microbiome that differs from those who don’t wear contacts.

Wearing lenses can, in and of itself, be a cause of eye problems, and estimates suggest that anywhere between 7% and 25% of contact lens wearers experience irritation and redness.

Actually, some researchers hypothesize that contact lenses make it easier for pathogens to colonize the eye by giving bacteria something to adhere to.

However, if this gives you a lightbulb moment, and makes you think about inventing an antimicrobial contact lens – well, sorry to tell you this – someone else got there first.

A medical microbiologist at the University of New South Wales in Australia is heading a team of scientists who are developing antimicrobial contact lenses by coating them with a synthetic peptide called melimine.

That’s melimine with an “i,” rather than Melamine with an “a.”

One’s an antimicrobial agent, while the other is, well, the stuff that unbreakable tableware is made from, and you wouldn’t want picnic plates in your eyes.

Although, when you read the following, you may well think the same about melimine (with an i.)

You see, melimine is a combination of two other substances – protomine, and milletin – hence its portmanteau name.

And somewhat unbelievably, protomine was originally isolated from salmon sperm, while mellitin is the principal active component of bee venom.

Quite honestly, two stranger substances to place in your eye are difficult to imagine.

Despite the thoroughly odd provenance of this antimicrobial agent, early tests on humans by the Australian scientists suggest that the melimine-coated contacts are as safe as regular lenses, and seem to be effective as an antimicrobial against two major pathogens – Pseudonymous aeruginosa and Staphylococcus aureus.

What do you get if you cross salmon sperm and bee venom?

There’s probably one heck of a good one-liner answer to that (and we’d love to hear your suggestions) but the real truth is that it’s antimicrobial contact lenses.

BRON: http://www.ubiomeblog.com/salmon-sperm-bee-venom-eye

WHY OUR MICROBIOME IS SO IMPORTANT FOR HEALTH & HOW MODERN LIFE DAMAGES IT

Standaard

What comes to your mind when bacteria are mentioned? For most people, bacteria and microbes suggest disease. However, there are billions of very important bacteria that literally share the human body and help it function. These microorganisms are collectively known as the microbiome.

Microbes are found living in various parts of the human body. Although there has been limited research on the microbiome, scientists have begun to appreciate its role in human health. According to the United States National Library of medicine, there are more than 1 trillion microbes living in the body, with the largest colonies being harboured in the gastrointestinal tract. These microbes are associated with regulation of digestion, protection from disease-causing organisms, and the development of a strong immune response.

Why the Human Microbiome Is So Important

The microbiome is linked to a person’s genetic footprint and hence plays a role in the determination of our unique DNA, predisposition to pathogens, hereditary traits, body type, and much more. In fact, up to 90% of all human maladies are linked to the health of the gut and the overall condition of our microbiome.

  • Obesity: A healthy microbiome helps to reduce accumulation of fat and inflammation. An alteration of gut microbiome triggers metabolic changes that can lead to obesity. The four species of bacteria involved are Candidatus arthromitus, Allobacullum, Lactobacillus, and Rikenelleceae.
  • Autism: Studies have revealed that the microbiome present in autistic children differs vastly from that of their healthy counterparts. In particular, autistic children lack highly beneficial bacteria like Bifidobacterium, which is known for reinforcing the immune systemAccording to the study, if a person has a leaky gut, some compounds produced by gut bacteria can find their way out of the intestines. These compounds proceed to alter the normal functioning of the brain, leading to characteristics associated with autism, particularly repetitive behaviour.
  • Immune Response: Medical practitioners contend that improper regulation of immunologic mechanisms causes most non-infectious conditions such as cancer, allergies, and even autoimmunity. A different study suggests that intestinal bacteria can influence inflammatory immune reactions that start in the gut. These responses and are then transmitted to the brain and other body organs, effectively triggering immunologic dysregulation. Some research suggests autoimmune problems could be at the root cause of male pattern hair loss, where our own hormone, DHT, actually starts attacking the hair follicles.
  • Diabetes: According to the American Diabetes Association, type 2 diabetes is usually accompanied by a notable change in gut bacteria. Further research has also found that certain microbes may help prevent type 1 diabetes. The studies highlight the role played by the microbiome in diabetes.

It is clear that microbes are good for the human body, but only in their natural, unmodified state. It is actually alterations to the natural microbiome composition that lead to poor health. A person’s lifestyle has a major bearing on their microbiome. It is therefore no coincidence that cases of the above-mentioned conditions are consistently on the rise, as modern life and many of the lifestyle choices we make in it all negatively impact our microbiome.

Things That Damage the Human Microbiome

1. Cesarean Section

Few people know this, but our first dose of good bacteria comes from our mothers during birth. As an infant slides through the birth canal, the bacteria infiltrate the body through the mouth, eyes, nose, and lips. The bacteria assemble in the respiratory and gastrointestinal tracts, forming colonies that immediately begin to multiply. A good number of mothers are increasingly depriving their babies of this initial inoculation by embracing the cesarean section. In fact, the United States Centres for Disease Control reported that in 2015, an astonishing 32.2% of all deliveries took the form of cesarean sections.

2. Antibiotics

A 2016 study gives evidence that suggests long term use of antibiotics can cause collateral damage to our microbiome. Although antibiotics can be lifesavers, their use is currently at an all-time high. In fact, research carried out over a 10 year period from 2000 to 2010 revealed that although antibiotic use is continually declining, as many as 2.27 antibiotics per person-year were prescribed to babies less than 24 months old. Overuse of antibiotics is associated with massive disruption of the microbiome, thereby impacting the immune system, the capacity to process food, and our ability to resist infections. For this reason, prudent use of antibiotics is important.

3. Over-the-Counter Medications

Medications sold over the counter such as painkillers, mouthwashes, antacids, and laxatives can destroy the microbiome, promote intestinal bleeding, and make the gut more permeable. As a result, larger proteins, bacteria, and a host of toxic substances can find their way into the bloodstream, leading to food allergies, overworking of the immune system, and widespread distribution of toxic elements throughout the body. According to a press release courtesy of the U.S.A Centers for Disease Control, there is evidence that 1 in 3 prescribed antibiotics are usually unnecessary. It is therefore wise to discuss the use of such medications with a doctor and also avoid taking them for longer than necessary.

4. Diet

Diet plays an important role in maintaining a good balance of good bacteria in the gut and other parts of the body. A major source of good bacteria is milk. However, when milk is sterilized by heating it to over 160 degrees, some bacteria are destroyed or their levels significantly reduced. In addition, artificial food colouring compounds have been found to have antibacterial and antifungal properties. In the attempt to make food products more presentable, we run the risk of altering the microflora in our bodies. Furthermore, artificial fats found in baked foods like cakes, biscuits, pizza, and crackers can lead to permeable cell walls. For the cell walls to become permeable, it means that the microbial organisms lining the surface have to be destroyed.

4. Chlorinated Drinking Water

It is almost impossible to maintain an ideal concentration of microbiome in the body, particularly in the gastrointestinal tract, if we frequently consume chlorinated water. Chlorine automatically kills both good and bad bacteria.

Other things that can damage the microbiome include:

  • Pesticides and herbicides
  • Surgeries and chemotherapy
  • Heavy exposure to pollutants like mercury
  • Antibacterial soaps and shampoos
  • Anti-cholesterol drugs

From the above information, it is clearly evident that altering the microbiome in our bodies can bring about serious long term health issues. It is therefore imperative to retain normal microbiome levels by regulating the usage of antibiotics, food colours, agricultural chemicals, chlorine, and the other items that we have mentioned. It is also very important to restore microbiome levels by:

  • Eating plenty of fermented foods like fermented milk, soy, and vegetables
  • Taking a probiotic supplement
  • Exposure to outdoor bacteria through working on your garden and keeping the windows open. Research shows that increasing the natural airflow can blow healthy microbes your way.

BRON: http://www.collective-evolution.com/2016/12/03/why-our-microbiome-is-so-important-for-health-how-modern-life-damages-it/

What Your Microbiome Wants for Dinner

Standaard

You may think twice about your diet when you follow the metabolic fate of your food.

BY DAVID R. MONTGOMERY & ANNE BIKLÉ, DECEMBER 10, 2015

Let’s admit it. Few of us like to think, much less talk about our colons. But you might be surprised at the importance of what gets into your colon and what goes on inside it. This little-loved part of our bodies is actually less an onboard garbage can and more like the unlikeliest medicine chest.

There is abundant medical evidence that diet greatly influences health, and new science is showing us why this is so. It is also showing us that advocates of trendy paleo and vegan diets are missing the big picture of how our omnivorous digestive system works.

Your colon is the home for much of your microbiome—the community of microbial life that lives on and in you. In a nutshell, for better and worse, what you eat feeds your microbiome. And what they make from what you eat can help keep you healthy or foster chronic disease.

To gain an appreciation of the human colon and the role of microbes in the digestive tract as a whole, it helps to follow the metabolic fate of a meal. But, first, a word about terms. We’ll refer to the digestive tract as the stomach, small intestine, and colon. While the colon is indeed called the “large intestine,” this is a misnomer of sorts. It is no more a large version of the small intestine than a snake is a large earthworm.

The stomach might better be called a dissolver, the small intestine an absorber, and the colon a transformer. These distinct functions help explain why microbial communities of the stomach, small intestine, and colon are as different from one another as a river and a forest. Just as physical conditions like temperature, moisture, and sun strongly influence the plant and animal communities that one sees on a hike from a mountain peak to the valley below, the same holds true along the length of the digestive tract.

How is it that the bulk of what humanity now eats could undermine our health?

Imagine you are at a Fourth of July barbecue. You saunter over to the grill to take a look at the fare. The pork ribs look great so you spear a few and add a heap of homemade sauerkraut on the side. You grab a handful of corn chips and a few pieces of celery. The vegetable skewers look good too, so you add one to the pile on your plate. And what would the Fourth of July be without macaroni salad and pie?

You lift a rib to your mouth and start gnawing. A forkful of sauerkraut mingles well with the meat and you crunch your way through another mouthful. The macaroni squishes between your teeth, but the celery takes some chewing. It all slips down the hatch and lands in the acid vat of your stomach where gastric acids start dissolving the bits of food. On the pH scale, where 7 is neutral and lower values are more acidic, the stomach is impressive. Its acidity ranges from 1 to 3. Lemon juice and white vinegar are about a 2.

After the stomach acids work over your meal, the resultant slurry drops into the top of the small intestine. Right away bile from the liver shoots in and starts working over the fats, breaking them down. Pancreatic juices also squirt into the small intestine to join the digestive party. Your Fourth of July feast is now on its way to full deconstruction into the basic types of molecules—simple and complex carbohydrates (sugars), fats, and proteins. In general, there is an inverse relationship between the size and complexity of these molecules and their fate in the digestive tract. Smaller molecules, primarily the simple sugars that compose the refined carbohydrates in the macaroni, pie crust, and chips are absorbed relatively quickly. Larger or more complex molecules take longer to break down and are absorbed in the lower reaches of the small intestine.

7856_961f1e759d4e9cca6754b1477b3b491a

DOWN THE HATCH: Once broken down in the stomach, simple carbohydrates, most fats, and proteins are absorbed in the small intestine. Fiber-rich complex carbohydrates, however, drop into the colon where microbial alchemists transform them into beneficial compounds our bodies need. But it takes the right microbes.Courtesy of the authors

The sausage-like loops of the small intestine provide an entirely different type of habitat for your microbiota than the stomach. Acidity drops off rapidly and, in combination with all the nutrients, the abundance of bacteria shoots up to 10,000 times more than that in the stomach. But conditions still aren’t ideal for bacteria in the small intestine. It’s too much like a flooding river. And understandably so, considering that about seven quarts of bodily fluids, consisting of saliva, gastric and pancreatic juices, bile, and intestinal mucus flow through it every day. And that’s not including the two additional quarts of whatever other liquids you consume. The rushing swirl of fluids entrains food molecules and bacteria and carries them rapidly downstream. The constant motion means that nothing stays put for long, so bacteria can’t really settle in and contribute much to digestion.

By the middle to lower reaches of your small intestine, the fats, proteins, and some of the carbohydrates in the Fourth of July slurry are sufficiently broken down for absorption and pass into the bloodstream through the intestinal wall. Notice we said some of the carbohydrates. A good amount of them aren’t broken down at all. These complex carbohydrates, what your doctor calls fiber, have a completely different fate than simple carbohydrates.

They drop, undigested, into the slough-like environment of the colon. With a neutral pH of about 7, the colon is a paradise for bacteria compared to the acid vat of the stomach or the churning rapids of the small intestine, where the pH is slightly lower.

Deep within the safety of our inner sanctum, communities of microbial alchemists use our colon as a transformative cauldron in which to ferment the fiber-rich complex carbohydrates we can’t digest. But it takes the right microbes. For example, Bacteroides thetaiotaomicron makes over 260 enzymes that break apart complex carbohydrates. In contrast, the human genome codes for a paltry number. We can only make about 20 enzymes to break down complex carbohydrates.

Grain Wreck

Our built-in cauldron and the fiber fermenters that run it are akin to personal pharmacists. They can churn out a great many medicinal compounds, and all of them are vital to the health and normal functioning of our colon cells. But we will only reap the benefits of butyrate and other alchemical products from our microbiome if we send lots of fiber down the hatch.

In thinking about such connections, the seeds of the world’s major cereal crops (grains) are a good place to start, as they account for the lion’s share of what the world eats. Lucky for us, grains offer a nearly perfect nutritional package. Whether wheat, barley, or rice, all have the basics—proteins, fats, and carbohydrates, along with health-boosting vitamins, minerals, and phytochemicals. But how is it that the bulk of what humanity now eats could undermine our health?

It has to do with the structure of a plant seed and what we do to them after they are harvested. Consider a grain of wheat. The outer seed coat (the “bran”) and the inner embryo (the “germ”) are small in terms of the overall seed weight. The bran composes about 14 percent of the total weight, while the germ adds another 3 percent. Despite their low weight, these two parts of a seed are packed full of nutrients. And the bran in particular is rich in complex carbohydrates, although a chemist calls them polysaccharides—very long chains of sugar molecules.

Many diet gurus shun our inner omnivore. We are constantly urged to eat a narrow (and ever-changing!) slice of omnivory.

The remaining 83 percent of a seed by weight is the endosperm. It contains most of the simple carbohydrates and nearly all the proteins found in a seed. In effect, the endosperm is like the placenta of a plant. Had the seed fallen to the ground and germinated, the simple carbohydrate-rich endosperm would have provided for the seed until it grew roots and leaves and could feed itself. While a sprouting plant clearly needs this type of supercharged energy supply, it’s not so good for us in large amounts.

When someone says a grain is “refined,” it means that the bran and the germ are stripped out when the seed is milled. Only the endosperm remains. Grind up the endosperm of wheat grains and you have white flour, which to your small intestine is an easily absorbable sugar.

7808_f04b8b59e703ac3889bf1ce4ca52db81 (1)

THE BAD SEED: The seed coat (“bran”) and inner embryo (“germ”) are packed full of nutrients. When a grain is refined, the bran and germ are stripped out, leaving the endosperm, a simple sugar. When we eat a lot of refined grains it can lead to excess glucose in our bloodstream, which leads to a host of other problems.

All cereal grains are amenable to refining. It’s the basis for all those eye-popping choices of boxed and bagged items in grocery stores around the globe, especially in the Western world. Refine corn, add some fats back, toss with salt, and you get the perfect tortilla chip. Do the same with wheat and you can make a fine cracker or bread.

Part of the reason grains are refined is because the fats go rancid—things made from refined flours last longer. Also, bakers don’t like bran in flour because it interferes with the elasticity of dough and inhibits rising. Removing these pesky parts of a grain solves those problems. But it causes a whole host of new ones for our bodies. When a seed goes through milling and processing, its perfect nutritional package falls apart.

Looking back at carbohydrate consumption over the last century reveals some interesting trends. Americans ate about the same amount of total carbohydrates in 1997 as we did in 1909—just not the same kinds. Over this time period, the proportion of carbohydrates from whole grains dropped from more than half of what we consumed to about a third. What replaced whole grains was food products made from different kinds of refined grains. In other words, for the first time in human history we now eat mostly the simple sugar part of a grain (the endosperm) and far less of the complex carbohydrate part of a grain (the bran and the germ).

The small intestine and colon handle a whole grain very differently than they do a refined grain. When complex carbohydrates remain bound together with other molecules in whole grains, it takes longer for enzymes to find the carbohydrates and start breaking them down. It’s like trying to open a cardboard box triple-wrapped in duct tape versus a box with an easy-open pull tab. Also, the sugar molecules from whole grains have to jockey for space with the protein and fat molecules to make contact with the absorptive cells in the small intestine, further slowing the sugar-absorption process. Plain and simple, when whole grains remain intact, your body absorbs the sugar component at a markedly slower rate. And the indigestible part of whole grains (and many other plant foods) pass into the colon where the fiber fermenters feast on it, producing copious amounts of butyrate.

In contrast, refined grains release a veritable fire hose of glucose, which our small intestine dutifully absorbs and passes on to the bloodstream. This sends insulin charging out of the pancreas to shuttle glucose from the blood into cells. But using cells as a place to endlessly stockpile sugar can eventually lead to other problems. And so, our wonderfully efficient bodies attempt to solve this problem—by converting excess sugar into fat and moving the overage into depot-like fat cells. When we need this energy, like in the middle of the night long before breakfast, it’s there for our use. But an abundance of refined carbohydrates converted into fats overshoots the needs of the average American. It’s a recipe that fuels inflammation and the onset of Type 2 diabetes, obesity, and other maladies.

The amount of meat in the Western diet can also pose problems. When consumed in relatively large quantities, animal protein is not completely broken down by the time it reaches the lower end of the small intestine. Eat too much meat and your overwhelmed small intestine delivers partially digested animal protein to the colon. When bacteria in the colon encounter intact or partially digested protein, a different kind of alchemy gets underway—protein putrefaction.

The problem with putrefaction stems from some of the elements of which animal proteins are made—a fair bit of nitrogen and small amounts of sulfur. Ammonia, nitrosamines, and hydrogen sulfide probably don’t mean much to the average person. But they are among the nitrogen and sulfur-containing compounds that bacterial putrefiers create. These compounds pack a toxic punch to cells lining the colon. They interfere with the uptake of butyrate, which deprives colonic cells of the energy they need to keep the colon functioning in top shape. The spaces between cells begin widening and the contents of the colon itself begin seeping out into surrounding tissue and leaky gut syndrome sets in. Undernourished cells start falling down on the job and cellular waste products begin to accumulate inside cells, which gums up other cellular operations. In addition, goblet cells, whose main purpose is to make and secrete the mucus that coats and protects the colon lining, slow down on mucus production. This makes the colon lining more vulnerable to pathogens and physical damage. This is not a trivial point. The colon is a busy place and the cells lining it constantly regenerate throughout a person’s life. If cells aren’t regularly replaced, the effects are somewhat like a house that goes unmaintained. Lots of little problems add up to bigger problems, and eventually the house starts to fall apart.

Other problematic byproducts are made in the colon. Eating lots of fat stimulates the liver to produce bile and deliver it to the small intestine. We need bile. It acts like a detergent and breaks fats into smaller molecules so they can be absorbed. Almost all of the bile used in the small intestine gets transported back to the liver after fats are sufficiently broken down. The key word here is almost. About 5 percent of bile secretions keep moving down the digestive tract and land in the colon. So, people who eat lots of fat secrete more bile to break down the fats, which means more bile ends up in the colon.

But guess who gets ahold of this bile and transforms it? Our colonic microbiota. They convert bile into decidedly vile compounds called secondary bile acids. And like putrefaction byproducts, secondary bile acids are toxic to cells lining the colon.

The Omnivore Within

As adherents of the paleo diet like to remind us, humans have long eaten meat. They stress that meat is a fabulous source of many nutrients, especially if the animals being eaten were raised without antibiotics and allowed to follow their normal way of eating. Vegetarians and vegans also admonish us, pointing out that people who eat a plant-based diet generally have lower rates of cardiovascular disease and Type 2 diabetes. They also point out that plants possess what animals don’t—an astounding arsenal of cancer-fighting phytochemicals.

In other words, both of these countervailing dietary perspectives—paleo and plant-based—contain more than a germ of truth. So consider another perspective. Combining elements of each diet makes a lot of sense given what our colonic microbiota do with the meat, fats, and plants we eat.

Here’s how it might play out. Imagine the putrefaction byproducts from undigested meat and secondary bile acids soaking the cells lining the colon. DNA mutations occur and a few abnormal colon cells start regenerating and gain the upper hand, ignoring instructions from immune cells to self-destruct. But follow this scene with a tsunami of butyrate, and the colonic cells perk up. Renegade cells succumb to immune cells. Prodigious amounts of undigested complex carbohydrates from plant foods enter the colon, dislodge and mop up secondary bile acids, thereby reducing contact between these carcinogens and the colon lining. Normal cell growth and functions resume, maintaining the health of the cauldron and thereby the body at large.

This scenario is ingenious from both a health and an ecological perspective. The fiber fermenters have solutions for problems the protein putrefiers create. Plus, everyone in the cauldron gets fed—with either complex carbohydrates, or the castoffs of undigested proteins and leftover bile acids. So long as the byproducts of the fiber fermenters prevail, the colon serves as a medicine chest rather than a toxic dump.

Here’s another way to think of your colon: The gut of each and every one of us is akin to a garden.

We are the most omnivorous creatures on the planet, with a vast array of domesticated crops and animals and wild foods at our fingertips. There is hardly anything people don’t eat—from the blubber of whales, the intestinal lining of pigs, caterpillars, rotten fish, raw fish, and seaweed, to the more mundane items like meat, dairy, bread, fruits, nuts, and vegetables. Yet many diets and diet gurus shun our inner omnivore. Instead, we are constantly urged to eat a narrow (and ever-changing!) slice of omnivory. Ideas for what we should eat have swung like a pendulum—more toward meat, or more toward vegetables, away from fats, then toward certain kinds of fats, toward whole grains, now away from all grains.

No wonder so many of us are either sick or tired, or both. Perhaps it’s worth focusing on what to feed our personal alchemists so that we realize the benefits. The mechanics are pretty simple. Pick a modest-sized plate and make meals using vegetables, legumes, leafy greens, beans, fruits, and unmilled whole grains as the main ingredients. Add some meat if you want and dollops of healthy fats on the side or sprinkled through the plant foods. Desserts and sweets are special, so save them for the special times.

We realize a diet like this doesn’t lend itself to being packaged and sold. It emphasizes how to think about food in the context of one’s microbiome, rather than prescribing a narrow choice of foods, counting calories, or advocating “dieting” as a daily activity. This advice is far from sexy and certainly not earth-shattering.

Understandably, special dietary considerations apply to people with gut dysfunctions or who are diabetic or allergic to specific foods. But for most of us the key to healthy eating may be as simple as balance and diversity—and sidelining refined carbohydrates. In other words, provide plenty of mulch for your fiber fermenters so that they can churn out far more of their nutritional gold than what your protein putrefiers and bile acid modifiers conjure up. Keeping the fiber-lovers on top means filling the cauldron every day with fermentative fodder so that it bubbles with things that are good for you.

If you haven’t grown any fonder of your colon and its capabilities by this point, try another way to think about it. The gut of each and every one of us is akin to a garden. And as many gardeners know, the plants that make a garden are only as vibrant and resilient to pests and pathogens as the soil in which they are rooted. The real key to a vibrant and healthy garden—both inside and outside our bodies—comes from cultivating legions of beneficial bacteria. The not-so-secret ingredient for doing so? Mulch. That’s right, plant matter for the tiny alchemists in our colonic cauldron to feast upon just as they do in garden soil. When they fill up on such fodder, we harvest a well-stocked medicine chest.

David R. Montgomery is Dean’s professor of geomorphology at the University of Washington and a MacArthur Fellow. Anne Biklé is a biologist and gardener.

Excerpted from The Hidden Half of Nature: The Microbial Roots of Life and Health by David R. Montgomery and Anne Biklé. Copyright © 2016 by David R. Montgomery and Anne Biklé. With permission of the publisher, W.W. Norton & Company, Inc. All rights reserved. This selection may not be reproduced, stored in a retrieval system, or transmitted in any form by any means without the prior written permission of the publisher.

bron: http://nautil.us/issue/31/stress/what-your-microbiome-wants-for-dinner