Schoonmaakspray even schadelijk voor longen als pakje sigaretten per dag


Het regelmatig gebruik van schoonmaakmiddelen, in de vorm van een spray, is net zo schadelijk voor je longen als het roken van een pakje sigaretten per dag. Dat zeggen onderzoekers van de Universiteit van Bergen.

Voor het onderzoek van de universiteit werden 6.000 mensen twintig jaar lang gevolgd. Vooral vrouwen die deze schoonmaakproducten gebruikten hadden significant vaker last van hun gezondheid.

20 sigaretten per dag

De longfunctie van vrouwen die schoonmaakster zijn of de schoonmaakmiddelen op dagelijkse basis thuis gebruikten, was in de studie vergelijkbaar met de longfunctie van iemand die 10 tot 20 jaar lang 20 sigaretten per dag rookt.

De onderzoekers raden de sprays, zoals Glassex, dan ook af. Ze raden aan om voortaan gewoon ouderwets een sopje te maken en de boel af te nemen met een microfiber doekje. “De korte termijneffecten van deze middelen op astma zijn steeds beter gedocumenteerd, maar van de lange termijn effecten weten we niks”, zegt hoofdonderzoeker professor Cecile Svanes.

Opeenstapeling van longschade

“We waren vooraf bang dat de chemicaliën in schoonmaakmiddelen bij regelmatig gebruik beperkte schade zouden toebrengen, maar dagelijks gebruik, jaar in jaar uit, zorgt blijkbaar voor een opeenstapeling van de longschade.” Het onderzoek is gepubliceerd in ‘The American Thoracic Society’s American Journal of Respiratory and Critical Care Medicine’.


Wipe & Clean! 100% natuurlijk en zonder chemicaliën, het beste schoonmaakmiddel, het beste alternatief dat ook nog beter schoonmaakt! Zo onschadelijk dat je het kunt drinken (voor je gezondheid)!


The Horror of a World Without Microbes


It’s not the paradise that germophobes might imagine.

A few years ago, while doing research for my book on the beneficial microbes that share our bodies, I went on an inadvisably frenetic weeklong reporting trip that spanned five cities and three time zones. On the final night, I wearily picked up the phone in my hotel room to order some food, and noticed a label on the receiver. It said: Antibacterial handset. It was a perfect reflection of the world’s attitude to bacteria. They’ve existed for billions of years. They are everywhere, including within us. They influence our lives, safeguard our health, and shape our bodies. I had been traveling for days to learn more about them. And yet, even my phone wanted to kill them.

It wasn’t always like this. Antonie van Leeuwenhoek, the Dutchman who first discovered the microbial world in the late 17th century, was delighted to learn that multitudes of living things existed below the threshold of our perception. Even when he saw microbes in the plaque between his own teeth, he was more amazed than repulsed. Microbes only became synonymous with disease and disgust in the 19th century, when, in quick succession, biologists realized that bacteria caused illnesses like cholera, leprosy, gonorrhea, tuberculosis and more. And so they became villains: things we needed to destroy, lest they destroy us.

But a world without microbes is unachievable. Killer phones notwithstanding, microbes are simply too abundant and omnipresent to wipe out. Even cosmic events like asteroid collisions or supernova explosions are unlikely to do it; it would likely take nothing less than the death of our sun to truly sterilize the planet.

Which is fortunate, because the death of all microbes would be a really bad thing. In 2014, the microbiologists Jack Gilbert and Josh Neufeld published a thought experiment, in which they imagined what would happen if all the microbes in the world suddenly vanished. It’s a fun essay that draws upon two long-standing scientific traditions: working out how important things are by removing them and seeing what happens; and just using your imagination if actual experiments aren’t feasible.

You can see the consequences of this dystopian fan fiction in the video below—the seventh in a series of online films produced by HHMI Tangled Bank Studios, which adapt the stories in my book, I Contain Multitudes.

Bekijk de video hier:


Fiber-fermenting bacteria improve health of type 2 diabetes patients


This is gut bacteria in culture. Credit: Tao Liu and Xiaoyan Pang/Shanghai Jiao Tong University

Dietary fibers promote gut bacteria that benefit blood glucose control

The fight against type 2 diabetes may soon improve thanks to a pioneering high-fiber diet study led by a Rutgers University-New Brunswick professor.

Promotion of a select group of gut bacteria by a diet high in diverse fibers led to better blood glucose control, greater weight loss and better lipid levels in people with type 2 diabetes, according to research published today in Science.

The study, underway for six years, provides evidence that eating more of the right dietary fibers may rebalance the gut microbiota, or the ecosystem of bacteria in the gastrointestinal tract that help digest food and are important for overall human health.

“Our study lays the foundation and opens the possibility that fibers targeting this group of gut bacteria could eventually become a major part of your diet and your treatment,” said Liping Zhao, the study’s lead author and a professor in the Department of Biochemistry and Microbiology, School of Environmental and Biological Sciences at Rutgers University-New Brunswick.

Type 2 diabetes, one of the most common debilitating diseases, develops when the pancreas makes too little insulin — a hormone that helps glucose enter cells for use as energy — or the body doesn’t use insulin well.

In the gut, many bacteria break down carbohydrates, such as dietary fibers, and produce short-chain fatty acids that nourish our gut lining cells, reduce inflammation and help control appetite. A shortage of short-chain fatty acids has been associated with type 2 diabetes and other diseases. Many clinical studies also show that increasing dietary fiber intake could alleviate type 2 diabetes, but the effectiveness can vary due to the lack of understanding of the mechanisms, according to Zhao, who works in New Jersey Institute for Food, Nutrition, and Health at Rutgers-New Brunswick.

In research based in China, Zhao and scientists from Shanghai Jiao Tong University and Yan Lam, a research assistant professor in Zhao’s lab at Rutgers, randomized patients with type 2 diabetes into two groups. The control group received standard patient education and dietary recommendations. The treatment group was given a large amount of many types of dietary fibers while ingesting a similar diet for energy and major nutrients. Both groups took the drug acarbose to help control blood glucose.

The high-fiber diet included whole grains, traditional Chinese medicinal foods rich in dietary fibers and prebiotics, which promote growth of short-chain fatty acid-producing gut bacteria. After 12 weeks, patients on the high-fiber diet had greater reduction in a three-month average of blood glucose levels. Their fasting blood glucose levels also dropped faster and they lost more weight.

Surprisingly, of the 141 strains of short-chain fatty acid-producing gut bacteria identified by next-generation sequencing, only 15 are promoted by consuming more fibers and thus are likely to be the key drivers of better health. Bolstered by the high-fiber diet, they became the dominant strains in the gut after they boosted levels of the short-chain fatty acids butyrate and acetate. These acids created a mildly acidic gut environment that reduced populations of detrimental bacteria and led to increased insulin production and better blood glucose control.

The study supports establishing a healthy gut microbiota as a new nutritional approach for preventing and managing type 2 diabetes.


EM op Groenmoesmarkt │ Boekel │18 maart


Sinds 2012 wordt de Groenmoesmarkt georganiseerd en is gegroeid tot een grote markt. Met 91 deelnemers uit Nederland en België is de markt dit jaar voor natuurlijk moestuinieren en eerlijk voedsel volledig volgeboekt. Bij EM Verkooppunt Boerengoedkunt u weer terecht voor diverse EM producten.

Het organiseren van de Groenmoesmarkt is een initiatief van Hans van Eekelen, de maker van Groenmoes. Uit onvrede met bestaande markten/beurzen waar de kleur groen steeds meer werd ingeruild voor rood en Tuinidee steeds meer veranderde in Terrasidee heeft hij op een zichtbare manier duidelijk willen maken waar Groenmoes voor staat: natuurlijk moestuinieren en eerlijk voedsel met regionale betrokkenheid.

Groenmoes is onder een gunstig gesternte geboren en langzaam uitgegroeid tot wat het nu is: een bron van inspiratie over, en een handreiking voor het actief bezig zijn met gezond voedsel.

Kom je ook?

Tuinmarkthallen: Gemertseweg 9a, 5427 ET Boekel
Zondag 18 maart 2018 van 10.00 – 17.00 uur
Meer informatie en


Lezing Bokashi op Minisymposium “Maaisel als bodemverbeteraar’ │ Ommen │ 21 maart


De Ommer Marke organiseert op woensdag 21 maart een minisymposium over “Maaisel als bodemverbeteraar’; de praktijk. Diverse sprekers komen aanbod, waaronder Agriton. We hebben de onder meer Ommer Marke begeleid met het opzetten van diverse Bokashihopen voor de Pilot Organisch (rest) Materiaal Als Bodemverbeteraar (OMAB). In 2016 hebben hier al eerder over geschreven. Lees het artikel hierover.

Het verwerken van bermmaaisel tot Bokashi is steeds meer onder de aandacht bij gemeenten en waterschappen. Bokashi is een milieuvriendelijk methode om organische resten zoals maaisel te verwerken hoogwaardige bodemverbeteraar. Lees op de onze site meer over Bokashi.


Yale study reveals gut bacteria can spread to other organs to trigger autoimmune disease


Orange dots represent the gut bacterium known to cause an autoimmune disease in liver tissue(Credit: Yale)

A new study from Yale University has discovered that a certain type of gut bacteria can migrate from the gut to other parts of the body, triggering autoimmune diseases. The research revealed that certain autoimmune conditions, such as autoimmune liver disease and systemic lupus, could potentially be treated with an antibiotic or vaccine that attacks the specific bacteria.

A huge amount of recent research has been uncovering the dramatic impact our gut microbiome has on our entire body. From modulating gene activity that can lead to type 1 diabetes to producing chemical molecules that can protect against cancer, it is becoming increasingly clear that our overall well-being is powerfully linked to the massive population of bacteria that reside in our gut.

Even more striking is the growing body of research examining how our gut bacteria influence diseases outside of our gut, particularly in relation to regulating immune system responses. The new Yale study set out to understand the connection between gut bacteria and certain autoimmune diseases.

It was discovered that a bacterium called Enterococcus gallinarum was able to spontaneously translocate from the gut to several other organs, including the liver, spleen and lymph nodes. Using mice engineered to be genetically susceptible to autoimmune diseases, the researchers identified the bacteria inducing the production of inflammation and specific antibodies known to be autoimmune promoting factors.

Suppressing growth of the bacteria using either antibiotics or a vaccine was found to reduce the autoimmune symptoms being generated. It was also confirmed that the same bacteria has been found in the liver of patients with autoimmune disease.

The research offers a fascinating new pathway to potentially treat a variety of autoimmune diseases that could have bacterial origins. Further study on Enterococcus gallinarum and its effects on several autoimmune diseases are underway.

The research was published in the journal Science.

Source: Yale University

Onze bron:

EM-Vereniging: “I.p.v. antibiotica en vaccinaties lijkt het beter om probiotica, zoals EM-Actief, gebruiken”

Formation of bacterial spores


The phenotypic memory of Bacillus subtilis spores can be visualized by tagging the enzyme alanine-dehydrogenase with a red fluorescent protein. Early forming spores contain higher levels of the enzyme than late forming spores (left). After the addition of the amino-acid L-alanine the early spores germinate faster and grow out (right). Credit: Alper Mutlu

Spore “memory” links different stages of the bacterial life cycle

Bacterial spores store information about the individual growth history of their progenitor cells, thus retaining a “memory” that links the different stages of the bacterial life cycle. This phenomenon was demonstrated in a recent study by an interdisciplinary research team led by Dr Ilka Bischofs at the BioQuant Centre of Heidelberg University. The spore memory could give rise to various adaptive behaviours in microbes. The results of the study were published in the journal Nature Communications.

“To cope with fluctuations in nutrient availability, many bacteria can switch between two states,” explains Dr Bischofs. “In the vegetative state, the cells grow and proliferate. Bacteria form spores to become dormant, which allows them to survive extended periods of starvation until new nutrients arrive to revive the spores.” The researchers studied this adaptive bacterial life cycle using Bacillus subtilis as a model organism. Through the use of time-lapse microscopy, they were able for the first time in this context to observe and to study sporulation and spore revival at the single-cell level — and how they correlate. They discovered that the spores responded very differently to the influx of new nutrients: The spores that formed earlier during a nutrient down-shift revived more quickly.

The metabolic enzyme alanine dehydrogenase contributes to this effect, according to the researchers. Bacteria produce the enzyme when the amino acid L-alanine is available and stop synthesis once it runs out. Dr Bischofs explains that the enzyme is passed down from one generation of bacteria to the next by carry-over until spores are formed. The enzyme is then stored in the new spores, where it remains inactive until new nutrients arrive that facilitate spore revival and re-growth. “In this way, the spores obtain a stable phenotypic memory of the growth and gene expression history of their progenitor cells, which influences their future. The same basic principle could also apply to other cellular proteins.”

The phenotypic memory has a major impact on spore development. The researchers were able to show a tradeoff between quantity and quality: Bacteria either make many spores that can revive only in nutrient-rich environments, or fewer but better spores that also revive in scarce environments. By linking the different phases of the bacterial life cycle, the spore “memory” could drive adaptations to ecological niches and trigger the emergence of various adaptive traits in microbes.

In addition to researchers at the Centre for Molecular Biology and the Institute for Pharmacy and Molecular Biotechnology of Heidelberg University, scientists from the German Cancer Research Center (DKFZ) and the Max Planck Institute for Terrestrial Microbiology in Marburg also joined in the study.